Permitting and Field Inspection Best Practices—A SolarABCs and U.S. Dept. of Energy Perspective

Presented by

Bill Brooks, PE Brooks Engineering Code Official Panel Chair, SolarABCs

Presentation Overview

- What is the US DOE history related to permitting and field inspection of solar energy systems?
- What is Solar ABCs?
- What resources currently exist to help guide the process?
- Next Steps
- Questions??

What is the US DOE history related to permitting and field inspection of solar energy systems?

DOE involvement in the 1980's

- In 1980, Sandia National Labs led a task force for the development of Article 690, Solar Photovoltaic Systems, for the National Electrical Code.
- Throughout the 80's the U.S. Dept. of Energy (DOE) was heavily involved in standards development and standards implementation for solar thermal and solar electric systems.
- DOE helped several manufacturers develop their products to meet standards and comply with various utility and jurisdictional requirements.

DOE involvement in the 1990's

- In the mid-1990's, DOE organized a technical review committee, operated by the Solar Energy Industries Association (SEIA) to update the National Electrical Code (NEC).
- 30+ industry leaders participated and produced a revised version for the 1999 NEC revision.
- At the same time, IEEE 929 was completed and published in January 2000, which paved the way for utility interconnection on a large scale.

DOE involvement in this decade

- DOE funds John Wiles of New Mexico State
 University to present training to various
 jurisdictions throughout the U.S. and to write
 articles for various periodicals on NEC issues.
- In 2004, they commissioned Pace University to develop an inspector guidelines to help organize the plan check and inspection processes.
- In 2007, they established the Solar America Board for Codes and Standards (SolarABCs) to organize efforts in codes and standards throughout

What is Solar ABCs?

- It is a board of industry leaders in the codes and standards arena—many of which have been working in the field for 2 or more decades.
- It improves responsiveness, effectiveness, and accessibility of codes and standards to U.S. solar stakeholders at all levels.
- The Solar ABCs enhances the practice of developing, implementing, and disseminating solar codes and standards

What resources currently exist to help guide the process?

- John Wiles' (NMSU) suggested practices and checklist.
- Pace University's Inspector Guidelines.
- SolarTech's Standard Permit Application.
- ICC Tri-Chapter Uniform Code Committee (TUCC).

John Wiles' (NMSU) suggested practices and checklist

- Versions date back to the 1990's
- Mr. Wiles has assisted the industry in understanding code requirements through his writings and resources.

CHECKLIST FOR PHOTOVOLTAIC

POWER SYSTEM INSTALLATIONS

- Covers:
 - PV Arrays
 - Overcurrent Protection
 - Electrical Connections
 - Charge Controllers
 - Disconnects
 - Inverters
 - Batteries
 - Grounding

Pace University's Inspector Guidelines

- Written by Bill Brooks in 2004 to develop a standardized method for permit submittals and Field Inspections.
- Widely used by jurisdictions throughout California, the U.S., and beyond.

Contents of Guidelines

- Introduction/Rational for Guidelines
- Permit Guidelines for Small-Scale PV Systems
 - Site Diagram
 - One-line Diagram
 - Major Component and Array Electrical Information
 - Provisions for PV Power Source Disconnect
 - Array Mounting Information
 - Costs of Permits
- Field Inspection Guideline
 - Equipment, conduit, and wiring installed according to plans
 - Structure attached according to plans and directions
 - Appropriate signs installed

Site Diagram

Electrical Diagram

SolarTech's Standard Permit Application

Form PV1

Standard Permit Application
Residential, Roof-Mounted, Grid-Connected PV Systems

This permit application applies to roof-mounted, grid-connected, residential photovoltaic (PV) systems.

Form PV1-INS describes the fields in this form in detail.

1	Property Owner Information	
	Property Owner	
	1.	Name:
	2.	Installation address:
	3.	Day Phone: () Evening Phone: ()
2	Sit	e Plan
		ach a site plan showing the structure that supports the PV system and the system's location on that
		cture. The site plan must be on 8.5 x 11 or larger paper.
3	Str	uctural Information
3.1	Ro	of Design
	1.	Weight of array: lbs.
	2.	Array load concentration: PSF
	3.	Dead load per support point: lbs.
	4.	Roofing type (material):
	5.	Roof construction: Rafters Trusses Other:
		If trusses or roof joist system are manufactured, skip to Section 3.2 .
		Rafter Size: X inches
	7.	Rafter Spacing: inches
	8.	Maximum unsupported span: feet, inches
	9.	Are the rafters over-spanned? (see the IRC span tables in Form PV1-INS) Yes No
		If No, skip to Section 3.2.
		If Yes , complete the rest of this section.
	10.	If the rafters are over-spanned <i>or</i> the array is over 5 PSF, it is recommended that you provide one of the following:
		a) A framing plan that shows details for how you will strengthen the rafters.
		b) Confirmation from a professional engineer that the roof structure will support the array.
3.2	Wir	nd Design
	1.	Is the PV system building integrated (BIPV)? Yes No
		If Yes, skip to Section 4.
		If No, complete the rest of this section.
	2.	Attach one of the following to show that the PV system can support the wind load:
		a) A cut sheet of the roof-mounting system
		b) Calculations of the wind load uplift resistance for the mounts and/or mounting details.
	3.	Is the PV system tilted over 18 inches above the roof?
		If No, skip to Section 4.
		If Yes , complete the rest of this section.
	4.	Wind load: PSF
	5.	Total wind load on array: lbs.
	6.	Maximum uplift per support connection: lbs.

Covers:

- 1.Property
 Information
- 2. Site Plan
- 3.Structural Analysis
- 4.System Components
- 5.Electrical Information

Standard Permit Application: Residential, Roof-Mounted, Grid-Connected PV Systems

Form PV1

4	System Components			
	Component Units Manufacturer and Model Number			
	1. Photovoltaic Modules:			
	2. Inverter:			
	3. Roof-Mounting System:			
	4. AC Disconnect Switch:			
	5. DC Disconnect Switch:			
	6. Attach PV module and inverter cut sheets. Attach cut sheets or a detail plan of the mounting system.			
5	Electrical Information			
1. Attach a wiring diagram for the PV system.				
2. Complete the following information for EACH inverter www.ith a unique configuration of solar modules.				
5.1	5.1 Array Electrical Specifications			
	Maximum Power Point Current (at STC) Produced by Array: A			
	Short Circuit Current Produced by Array: A			
	3. Maximum Power Point Voltage (at STC) Produced by Array: V			
	4. Open Circuit Voltage Produced by Array: V (refer to NEC 690.7)			
	5. STC Watts Produced by Array: W (DC)			
	6. PTC Watts Produced by Array: W (AC)			
5.2	.2 Array Wiring and Calculations (DC)			
	1. Wire type / Size:/AWG			
	2. Temperature Derated Ampacity of Wire *: A			
	3. NEC-Required Wire Ampacity: A			
	4. Equipment-Grounding Conductor Size: AWG (refer to NEC Table 250.122)			
5.3	Source Circuits to Inverter Wiring and Overcurrent (DC)			
	1. Number of Wires / Type / Size:/			
	2. Temperature Derated Ampacity of Wire *: A			
	3. NEC-Required Wire Ampacity: A			
	4. Fuse Size (if applicable) : A			
	5. Equipment-Grounding Conductor Size: AWG (refer to NEC Table 250.122)			
5.4	Inverter to Grid-Tie Wiring and Overcurrent (AC)			
	1. Wire type and size: Wire type / size: / AWG			
	2. Working Voltage: V			
	3. Temperature Derated Ampacity of Wire *: A			
	4. NEC-Required Wire Ampacity: A			
	5. Overcurrent Protection (AC breakers) Size:A			
	6. Equipment-Grounding Conductor Size:AWG (refer to NEC Table 250.122)			
5.5	Maximum System Voltage Calculations			
	1. Lowest Ambient Temperature for Site: °C			
	2. Low Temperature Voltage Multiplier (per NEC): % (refer to NEC Table 690.7)			
	Maximum Voltage (DC) Produced by Array (VOC at STC): Wavingum System Voltage (DC) at Law Temperature V			
	4. Maximum System Voltage (DC) at Low Temperature: V 5. AC Crounding Floated a Conductor Size AWG.			
	AC Grounding Electrode Conductor Size: AWG DC Grounding Electrode Conductor Size: AWG			
	DC Grounding Electrode Conductor Size: AWG			

^{*} Refer to NEC Tables 310.16 or 310.17, NEC 690.31(A), NEC Table 310.15(B)(2)(a), NEC 310.10 FPN No. 2

ICC Tri-Chapter Uniform Code Committee (TUCC)

- PROPOSED GUIDELINES/
- Plans submitted for a permit must contain the following items:
- 1) Plan view showing location of the PV installation and layout of existing roof framing members that support the system;
- 2) Details on mounting of PV modules, type and number of roof coverings, and subsequent weatherproofing of the roof;

ICC Tri-Chapter Uniform Code Committee (TUCC)

- PROPOSED GUIDELINES/ (cont)
- 3) Electrical single-line diagram clearly identifying all devices installed in the PV system and indicating total kVA rating of system;
- 4) Clearly identify the point of interconnection with the utility supplied wiring system and provide details on main breaker, PV breaker and rating of bussing;
- 5) Indicate type and size of all conduit and conductors throughout the PV system;

PROPOSED GUIDELINES/ (cont)

- 6) Provide manufacturer's cut-sheets and installation instructions for all PV modules, mounting systems, combiner boxes (if used), inverters, and disconnects;
- 7) Provide structural calculations, prepared by a registered California design professional, if the total weight of the photovoltaic system is over five pounds per square foot;
- 8) The installation of the PV system shall conform to the requirements of CEC Article 690 and any other applicable articles or standards.

PV Array Layout & Wiring Plan

Electrical Diagram

Next Steps

- Pursue safety, quality, and streamlined process relentlessly.
- Continue to work on consensus documents to simplify the permitting and inspection processes.
- SolarTech/CalSEIA Summit in April, 2009.

